Online Advertising

Pricing Models

- CPM (Cost per thousand impressions)
- CPC (Cost per click)
- CPA (Cost per acquisition)
- Conversion rates:
 - Click-through-rate (CTR), conversion from clicks to acquisitions, ...

Differences between these pricing models:

- Uncertainty in conversion rates:
 - Sparse data, changing rates, ...
- Stochastic fluctuations:
 - Even if the conversion rates were known exactly, the number of clicks/conversions would still vary, especially for small samples
Sponsored Search Auction

Advertiser \(\text{Bid} = \text{Cost per Click} \ C \) Auctioneer (Search Engine) CTR estimate \(Q \)

- Value/impression ordering: \(C_1 Q_1 > C_2 Q_2 > \ldots \)
- Give impression to bidder 1 at CPC = \(C_2 Q_2 / Q_1 \)

VCG Mechanism: Truthful for a single slot, assuming static CTR estimates Can be made truthful for multiple slots [Vickrey-Clark-Groves, Myerson81, AGM06]

This talk will focus on single slot for proofs/examples
When Does this Work Well?

- High volume targets (keywords)
 - Good estimates of CTR

- What fraction of targets are high volume?
 - Folklore: a small fraction
 - **Motivating problem:**
 - How to better monetize the low volume keywords?
Traffic Estimator

- Average CPC: $0.00 (at a maximum CPC of $0.05)
 Estimated clicks per day: 0 (at a daily budget of $1.00)

Estimates are based on your bid amount and geographical targeting selections. Because the Traffic Estimator does not consider your daily budget, your ad may receive fewer clicks than estimated.

<table>
<thead>
<tr>
<th>Keywords</th>
<th>Search Volume</th>
<th>Estimated Avg. CPC</th>
<th>Estimated Ad Positions</th>
<th>Estimated Clicks / Day</th>
<th>Estimated Cost / Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>living trust bay area</td>
<td></td>
<td>$0.00</td>
<td>Not enough data to give estimates</td>
<td>0</td>
<td>$0</td>
</tr>
</tbody>
</table>

Notes about these estimates for your keywords and targeting:
- Because your campaigns do not yet have a performance history, keyword estimates are based on system-wide performance information.
- We have too little data to estimate traffic for your selections. Try adding keywords or choosing more languages or a larger target area.
Possible Solutions

- Coarse ad groups to predict CTR:
 - Use performance of advertiser on possibly unrelated keywords

- Predictive models
 - Regression analysis(feature extraction)
 - Taxonomies/clustering
 - Collaborative filtering

- **Our approach**: Devise richer pricing models
Hybrid Scheme

Bid$_1$ = Cost per Impression
Bid$_2$ = Cost per Click

<M, C>

Advertiser Auctioneer (Search Engine)
Hybrid Scheme

Bid_1 = Cost per Impression
Bid_2 = Cost per Click

< M, C >

CTR estimate

Q

Kamesh Munagala, kamesh@cs.duke.edu
Hybrid Scheme

Advertiser

\[\text{Bid}_1 = \text{Cost per Impression} \]
\[\text{Bid}_2 = \text{Cost per Click} \]

\(<M, C> \)

Auctioneer (Search Engine)

\(\text{CTR estimate} \)

\(Q \)

- Advertiser’s score \(R_i = \max \{ M_i, C_i Q_i \} \)
Hybrid Scheme

- **Bid** 1 = Cost per Impression
- **Bid** 2 = Cost per Click

- **Advertiser**

 - **<M, C>**

- **Auctioneer** (Search Engine)

 - **CTR estimate**
 - Q

- **Advertiser’s score** $R_i = \max \{ M_i, C_i Q_i \}$

- **Order by score:** $R_1 > R_2 > ...$
Hybrid Scheme

Bid$_1$ = Cost per Impression
Bid$_2$ = Cost per Click

Advertiser

Auctioneer (Search Engine)

CTR estimate

Q

- Advertisement’s score $R_i = \max \{ M_i, C_i Q_i \}$
- Order by score: $R_1 > R_2 > ...$
- Give impression to bidder 1:
 - If $M_1 > C_i Q_i$ then charge R_2 per impression
 - If $M_1 < C_i Q_i$ then charge R_2 / Q_i per click
Why Such a Model?

- Per-impression bid:
 - Advertiser’s estimate or “belief” of CTR
 - May or may not be an accurate reflection of the truth
 - Backward compatible with cost-per-click (CPC) bidding
Why Such a Model?

- **Per-impression bid:**
 - Advertiser’s estimate or “belief” of CTR
 - May or may not be an accurate reflection of the truth
 - Backward compatible with cost-per-click (CPC) bidding

- **Why would the advertiser know any better?**
 - Advertiser aggregates data from various publishers
 - Has domain specific models not available to auctioneer
 - Is willing to pay a premium for internal experiments
Benefits

1. **Search engine:**
 - Better monetization of low volume keywords

2. **Advertiser:**
 - Opportunity to make the search engine converge to the correct CTR estimate *without paying a premium*

3. **Technical:**
 a) Truthful
 b) Accounts for risk characteristics of the advertiser
 c) Allows users to implement complex strategies
Multiple Slots

- Show the top K scoring advertisers
 - Assume $R_1 > R_2 > ... > R_K > R_{K+1} ...$

- Generalized Second Price (GSP) mechanism:
 - For the i^{th} advertiser, if:
 - If $M_i > Q_i C_i$ then charge R_{i+1} per impression
 - If $M_i < Q_i C_i$ then charge R_{i+1} / Q_i per click
Multiple Slots

- Show the top K scoring advertisers
 - Assume $R_1 > R_2 > \ldots > R_K > R_{K+1}$...

- Generalized Second Price (GSP) mechanism:
 - For the i^{th} advertiser, if:
 - If $M_i > Q_i C_i$ then charge R_{i+1} per impression
 - If $M_i < Q_i C_i$ then charge R_{i+1} / Q_i per click

- Can also implement VCG
 - Need separable CTR assumption
 - Details in the paper

[Vickrey-Clark-Groves, Myerson81, AGM06]
Bayesian Model for CTR

True underlying CTR = p

Advertiser

Auctioneer (Search Engine)
Bayesian Model for CTR

True underlying CTR = \(p \)

- **Advertiser**
 - Prior distribution \(P_{adv} \) (Private)

- **Auctioneer (Search Engine)**
 - Prior distribution \(P_{auc} \) (Public)
Bayesian Model for CTR

True underlying CTR = p

Per-impression bid M

Prior distribution P_{adv}
(Private)

Prior distribution P_{auc}
(Public)

CTR estimate Q

Advertiser

Auctioneer (Search Engine)
Bayesian Model for CTR

True underlying CTR = p

Per-impression bid M

Prior distribution P_{adv} (Private)

Prior distribution P_{auc} (Public)

CTR estimate Q

Advertiser

Auctioneer (Search Engine)

Each agent optimizes based on its current “belief” or prior:
Beliefs updated with every impression
Over time, become sharply concentrated around true CTR
What is a Prior?

- Simply models asymmetric information
 - Sharper prior \Rightarrow More certain about true CTR p
 - $E[\text{Prior}]$ need not be equal to p

- Main advantage of per-impression bids is when:
 - Advertiser’s prior is sharper than auctioneer’s
 - Limiting case: Advertiser certain about CTR p

- Priors are only for purpose of analysis
 - Mechanism is well-defined regardless of modeling assumptions
Truthfulness

- Advertiser assumes CTR follows distribution P_{adv}
- Wishes to maximize expected profit at current step
 - $E[P_{adv}] = x = \text{Expected belief about CTR}$
 - Utility from click = C
 - Expected profit = $C \times x - \text{Expected price}$
Truthfulness

- Advertiser assumes CTR follows distribution P_{adv}
- Wishes to maximize expected profit at current step
 - $E[P_{adv}] = x$ = Expected belief about CTR
 - Utility from click = C
 - Expected profit = $C \times x$ - Expected price

Let C_y = Per impression bid
R_2 = Highest other score
If $\max(C_y, C \times Q) < R_2$ then Price = 0
Else:
 - If $y < Q$ then: Price = $x \times R_2 / Q$
 - If $y > Q$ then: Price = R_2
Truthfulness

- Advertiser assumes CTR follows distribution P_{adv}
- Wishes to maximize expected profit at current step
 - $E[P_{adv}] = x =$ Expected belief about CTR
 - Utility from click = C
 - Expected profit = $C \cdot x$ - Expected price

Bidding (Cx, C) is the dominant strategy

Regardless of Q used by auctioneer
Regardless of P_{adv} and true CTR p

Elicits advertiser’s “expected belief” about the CTR!
Holds in many other settings (more later)
Conjugate Beta Priors

- \(P_{auc} \) for advertiser \(i = Beta(\alpha, \beta) \)
 - \(\alpha, \beta \) are positive integers
 - Conjugate of Bernoulli distribution (CTR)
 - Expected value = \(\frac{\alpha}{\alpha + \beta} \)

- Bayesian prior update:
 - Probability of a click at the next step is: \(\frac{\alpha}{\alpha + \beta} \)
 - If click, new \(P_{auc} \) (posterior) = \(Beta(\alpha+1, \beta) \)
 - If no click, new \(P_{auc} \) (posterior) = \(Beta(\alpha, \beta+1) \)
Evolution of Beta Priors

Click

No Click

Denotes Beta(1, 1)
Uniform prior
Uninformative

\[\text{E}[P_{\text{auc}}] = \frac{1}{4} \]

\[\text{E}[P_{\text{auc}}] = \frac{2}{5} \]

Kamesh Munagala, kamesh@cs.duke.edu
Properties

- Larger α, $\beta \Rightarrow$ Sharper concentration around p
 - Uninformative prior: $Beta(1,1) = Uniform[0,1]$

- $Q = \mathbb{E}[P_{auc}] = \frac{\alpha}{(\alpha + \beta)}$
 - Encodes auctioneer’s “belief”
 - Could be different from true CTR p
Certain Advertiser

- Knows true CTR p and bids rationally $(M_i = p_i)$
 - $P_{adv} = p_i$ with probability 1
 - $P_{auc} = \text{Beta}(\alpha_i, \beta_i)$ and $Q_i = \mathbb{E}[P_{auc}] = \alpha_i / (\alpha_i + \beta_i)$

- Revenue properties of auctioneer:
 - Worst case: 63% of CPC scheme
 - Canonical case: $\log n$ times better than CPC scheme

- Flexibility for advertiser:
 - Can make P_{auc} converge to p without losing revenue
 - But pays huge premium for achieving this in CPC auction
Better Monetization

- Illustrative Scenario: Low volume keywords
 - n advertisers, all click-utilities $C = 1$
 - All $P_{\text{auc}} = \text{Beta}(1, \log n)$ so that $\mathbb{E}[P_{\text{auc}}] = Q \approx 1 / \log n$
 - High variance prior
 - Some p_i close to 1 with high probability
 - Per-impression bid will elicit this high p_i
 - CPC auction allocates slot to a random advertiser

- **Theorem**: Hybrid auction can generate $\log n$ times more revenue for auctioneer than existing CPC auction
Flexibility for Advertisers

- Suppose advertiser certain about CTR = \(p \)
 - Assume \(C = 1 \) and \(Q < p \)
 - Bids truthfully and wins on per impression bids

- Hybrid scheme: Charged at most \(p \) per impression
 - Impressions shown repeatedly
 - Auctioneer’s belief \(P_{auc} \) will converge to have mean \(p \)
 - Now, advertiser switches to CPC bidding

- Assume auctioneer’s prior is \(Beta(\alpha, \beta) \)
 - \(Q = \alpha / (\alpha + \beta) < p \)
Flexibility for Advertisers

- If CTR converges in T impressions resulting in N clicks:
 - $(\alpha + N)/(\alpha + \beta + T) \geq p$
 - Since $Q = \alpha/(\alpha + \beta) < p$, this implies $N \geq Tp$
 - Value gain = N; Payment for T impressions at most $T \times p$
 - Hence, no loss in revenue to advertiser!

- In the existing CPC auction:
 - The advertiser would have to pay a huge premium for getting impressions and making the CTR converge
Uncertain Advertisers

- Advertiser should “pay premium” for CTR p resolving to a high value
 - What should her bidding strategy be?
 - Does it lead to a socially optimal mechanism?

- Key contribution:
 - Defining a Bayesian model for repeated auctions
 - Dominant strategy exists!
Semi-Myopic Advertiser

- Maximizes discounted utility in contiguous time horizon in which she wins the auction
 - State of other advertisers stays the same during this time
 - Once she stops getting impressions, cannot predict future
 ... since future will depend on private information of other bidders!
 - Circumvents negative results in economics literature

- Private information with advertiser:
 - Discount factor γ, value C_i and prior P_{adv}
 - Discount factor models varying optimization horizons
 - Strategic vs. myopic
Dominant Hybrid Strategy

- Bidder always has a dominant hybrid strategy
 - **Bidding Index**: Computation similar to the Gittins index
 - Bidder can optimize her utility by dynamic programming
Dominant Hybrid Strategy

- Bidder always has a dominant hybrid strategy
 - **Bidding Index**: Computation similar to the Gittins index
 - Bidder can optimize her utility by dynamic programming

- **Socially optimal** in many reasonable scenarios:
 - **Myopic advertiser**: Has $\gamma_i = 0$; trusts auctioneer’s prior:
 - Pure per-click bidding implements the Gittins index policy
 - If advertiser is *certain* of CTR, and Q_i is an underestimate:
 - Bidding index = Per-impression bidding, which is socially optimal
 - Implementation needs *both* per-impression and per-click bids
Summary

- Allow both per-impression and per-click bids
 - Same ideas work for CPM/CPC + CPA
- Significantly higher revenue for auctioneer
- Easy to implement
 - Hybrid advertisers can co-exist with pure per-click advertisers
 - Easy path to deployment/testing
- Many variants possible with common structure:
 - Optional hybrid bids
 - Use the “max” operator to compute score
Open Questions

- Some issues that may be exacerbated:
 - Whitewashing: Re-entering when CTR is lower than the default
 - Fake Clicks: Bid per impression initially and generate false clicks to drive up CTR estimate Q
 - Switch to per click bidding when slot is “locked in” by the high Q

- Analysis of semi-myopic model
 - Other applications of separate beliefs?

- Connections of Bayesian mechanisms to:
 - Regret bounds and learning [Nazerzadeh, Saberi, Vohra ‘08]
 - Best-response dynamics [Edelman, Ostrovsky, Schwarz ‘05]