idMesh: Graph-Based Disambiguation of Linked Data

Philippe Cudré-Mauroux -- MIT

joint work with
Parisa Haghani, Michael Jost, Karl Aberer (EPFL)
and Hermann de Meer (U. Passau)

April 24, 2009
World Wide Web Conference
Overview

- A Web of Resources
 - Distributed Naming Game
 - Entity Consolidation
- idMesh Constructs
- Link-Analysis Framework
- System Architecture
- Performance
- Conclusions & Future Work
A Web of Resources

- Increasingly, the world is modeled as a collection of (interlinked) identifiers
 - Linked Data
 - Semantic Web
 - RESTful services
 - ...

http://data.semanticweb.org/person/philippe-cudre-mauroux

foaf:made

Naming & Decentralization

• The great thing about unique identifiers is that there are so many to choose from
 ■ Decentralized naming game
 ■ Soaring dimensions in Web 2.0 / 3.0 contexts
 ■ Social websites
 ■ Exported (linked) data
 ■ Automated mash-ups

http://semanticweb.org/id/Philippe_Cudre-Mauroux
http://data.semanticweb.org/person/philippe-cudre-mauroux
http://semanticweb.org/wiki/Special:ExportRDF/Philippe_Cudr%C3%A9-Mauroux
http://tw.rpi.edu/wiki/Special:ExportRDF/Philippe_Cudre%3CA9-Mauroux
http://wiki.ontoworld.org/index.php/Special:ExportRDF/Philippe_Cudr%C3%A9-Mauroux
http://korrekt.org/index.php/Special:ExportRDF/Philippe_Cudre%3CA9-Mauroux
http://www.zoominfo.com/PersonID=402960578 http://www.flickr.com/photos/28735...@N00/
http://www.facebook.com/profile.php?id=1251943...
The great thing about unique identifiers is that there are so many to choose from:

- Decentralized naming game
- Soaring dimensions in Web 2.0 / 3.0 contexts
 - Social websites
 - Exported (linked) data
 - Automated mash-ups

http://semanticweb.org/id/Philippe_Cudre-Mauroux
http://data.semanticweb.org/person/philippe-cudre-mauroux
http://people.csail.mit.edu/pcm/i
http://lsirpeople.epfl.ch/pcudre/i
http://semanticweb.org/wiki/Special:ExportRDF/Philippe_Cudr%C3%A9-Mauroux
http://tw.rpi.edu/wiki/Special:ExportRDF/Philippe_Cudr%C3%A9-Mauroux
http://wiki.ontoworld.org/index.php/Special:ExportRDF/Philippe_Cudr%C3%A9-Mauroux
http://korrekt.org/index.php/Special:ExportRDF/Philippe_Cudr%C3%A9-Mauroux
http://www.zoominfo.com/PersonID=402960578
http://www.flickr.com/photos/28735...@N00/
http://www.facebook.com/profile.php?id=1251943...
Entity Consolidation (i)

- A few constructs are increasingly used to consolidate Web identifiers
 - OWL:SameAs, XFN rel:me, pipes, etc.

http://data.semanticweb.org/person/philippe-cudre-mauroux
http://semanticweb.org/id/Philippe_Cudre-Mauroux
Same As
Entity Consolidation (ii)

- Online entity consolidation is a complex game
 - Simple binary constructs are often insufficient

 - Social contexts (e.g., professional vs personal entities)
 - http://people.csail.mit.edu/pcm/i ➔ ??? ➔ http://www.facebook.com/id=1251943...

 - Granularity (e.g., out-of-date entities)

 - Uncertainty (e.g., automatically-generated entities)
New Twist on an Old Problem

- Well-known problem known as *Entity Disambiguation* or *Resolution*
 - Large body of related work
 - See paper

- **New context**
 - Unprecedented scale
 - Networked game
 - Social dimension

⇒ *central* problem impeding all automated, large-scale online data processing endeavors
The *idMesh* Approach

- *idMesh* suggests a radically different approach to online entity consolidation that is:
 - User-driven
 - Best-effort (probabilistic)
 - Decentralized

- Link-analysis framework based on transitive closures of relationships
 - Emergent semantics
 - semantics of data derived through network
 - the sum is greater than the parts
idMesh Constructs

- Two levels of granularity
- Entity disambiguation
- Temporal discrimination
- Confidence values
- Can encompass previous constructs
Problem Definition

• Input: series of statements defining a \textit{weighted graph} or \textit{interrelated} identifiers
 ■ no associated contents, attributes, or properties...

• Output: \textit{clusters} of \textit{equivalent} identifiers
 ■ probabilistic, \textit{a posteriori} network equivalence
 ■ equivalence based on probabilistic threshold
Problem Definition

• Input: series of statements defining a \textit{weighted graph} or \textit{interrelated} identifiers
 ■ no associated contents, attributes, or properties...

• Output: \textit{clusters} of \textit{equivalent} identifiers
 ■ probabilistic, \textit{a posteriori} network equivalence
 ■ equivalence based on probabilistic threshold
Probabilistic Disambiguation (i)

Definition of two graphs

Source Graph

Entity Graph

Trusted Source s_1

$< e_1 \equiv c_1 e_2 >$
$< e_1 \equiv c_2 e_3 >$
$< e_1 \equiv c_3 e_4 >$
$< e_2 \equiv c_4 e_4 >$

Unknown Source s_2

$< e_2 \equiv c_5 e_4 >$
$< e_3 \equiv c_6 e_4 >$
Probabilistic Disambiguation (ii)

Definition of conditional probability functions relating links & sources

- Transitive closures of link properties (*entity graph*)
 - *ID Equivalence* is
 - *symmetric*
 - *transitive*

```
<table>
<thead>
<tr>
<th></th>
<th>ID 1</th>
<th></th>
<th>ID 2</th>
<th></th>
<th>ID 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq</td>
<td>90%</td>
<td></td>
<td>eq95%</td>
<td></td>
<td>non-eq15%</td>
</tr>
</tbody>
</table>
```
Probabilistic Disambiguation (iii)

Definition of conditional probability functions relating links & sources

• Source discrimination (*source graph*)
 ■ Through internet domains / authentication mechanisms
 ■ openid, foaf-ssl, etc.
 ■ High confidence values for well-known + well-behaved sources

source 1 VS source 2
well-known, well-behaved unknown, conflicting
Probabilistic Disambiguation (iv)

Source Graph

- s_1 connected by c_1, c_2, c_3, c_4, c_5, c_6
- $l_{k_{1-2}}$, $l_{k_{1-3}}$, $l_{k_{1-4}}$, $l_{k_{2-4}}$, $l_{k_{3-4}}$

Entity Graph

- e_1, e_2, e_3, e_4
- $l_{k_{1-2}}$, $l_{k_{1-3}}$, $l_{k_{1-4}}$, $l_{k_{2-4}}$, $l_{k_{3-4}}$

Reputation-Based Trust Management

- Initial Link Values
- Combined Value Functions / Priors for Links
- Inferred Link Values
- Graph Constraints
- Trust Values for Sources
- Trust Constraint

Probabilistic inference on *combined* graph
Scalability

- Problem: both source/entity graphs can become *very large* in practice
 - Unbounded number of sources
 - peer production
 - Cheap production of (uncertain) links
 - automated matching algorithms

- inference should in itself be *decentralized*
Distributed, P2P Architecture

Entity Management Layer (idMesh)

Overlay Layer (Jupp + GridVine)

Internet Layer

Message Passing

DHT

Internet
Summary of Results

• **Efficient, distributed** computations
 ■ Parallelized sums & products only
 ■ Quasi-instantaneous on a local machine
 ■ Naturally *scales up* in networked environments
 ■ Seconds to disambiguate 8’000 entities interlinked by 24’000 links on 400 machines

• High *discriminative power* in practice
 ■ 90%* accuracy with well-behaved but uncertain sources
 ■ 75% accuracy with 90% malign sources
Conclusions & Future Work (i)

- *idMesh*: a ...
 - user-driven
 - probabilistic
 - decentralized
 ...
 link-analysis approach to disambiguate linked data.

- Can be combined with previous approaches
 - Previous constructs
 - Automated matching / content-based disambiguation
 - Reputation-based trust mechanisms
Conclusions & Future Work (ii)

• *Could* be extended to encompass further types of links
 - subsumption
 - relatedness

• *Should* be extended to support personalized disambiguation capabilities
 - context-sensitive
idMesh: Graph-Based Disambiguation of Linked Data

Philippe Cudré-Mauroux -- MIT

pcm@csail.mit.edu